Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reflection systems and partial root systems

Identifieur interne : 000268 ( Main/Exploration ); précédent : 000267; suivant : 000269

Reflection systems and partial root systems

Auteurs : Ottmar Loos [Allemagne] ; Erhard Neher [Canada]

Source :

RBID : ISTEX:89311032CD672C22C824E50DA7AC6E16E169F1A8

English descriptors

Abstract

We develop a general theory of reflection systems and, more specifically, partial root systems which provide a unifying framework for finite root systems, Kac–Moody root systems, extended affine root systems and various generalizations thereof. Nilpotent and prenilpotent subsets are studied in this setting, based on commutator sets and the descending central series. We show that our notion of a prenilpotent pair coincides, for Kac–Moody root systems, with the one defined by Tits in terms of positive systems and the Weyl group.

Url:
DOI: 10.1515/form.2011.013


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reflection systems and partial root systems</title>
<author>
<name sortKey="Loos, Ottmar" sort="Loos, Ottmar" uniqKey="Loos O" first="Ottmar" last="Loos">Ottmar Loos</name>
</author>
<author>
<name sortKey="Neher, Erhard" sort="Neher, Erhard" uniqKey="Neher E" first="Erhard" last="Neher">Erhard Neher</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:89311032CD672C22C824E50DA7AC6E16E169F1A8</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1515/form.2011.013</idno>
<idno type="url">https://api.istex.fr/document/89311032CD672C22C824E50DA7AC6E16E169F1A8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C10</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C10</idno>
<idno type="wicri:Area/Istex/Curation">001C10</idno>
<idno type="wicri:Area/Istex/Checkpoint">000229</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000229</idno>
<idno type="wicri:doubleKey">0933-7741:2011:Loos O:reflection:systems:and</idno>
<idno type="wicri:Area/Main/Merge">000268</idno>
<idno type="wicri:Area/Main/Curation">000268</idno>
<idno type="wicri:Area/Main/Exploration">000268</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Reflection systems and partial root systems</title>
<author>
<name sortKey="Loos, Ottmar" sort="Loos, Ottmar" uniqKey="Loos O" first="Ottmar" last="Loos">Ottmar Loos</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58097 Hagen</wicri:regionArea>
<wicri:noRegion>58097 Hagen</wicri:noRegion>
<wicri:noRegion>58097 Hagen</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58097 Hagen</wicri:regionArea>
<wicri:noRegion>58097 Hagen</wicri:noRegion>
<wicri:noRegion>58097 Hagen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neher, Erhard" sort="Neher, Erhard" uniqKey="Neher E" first="Erhard" last="Neher">Erhard Neher</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5</wicri:regionArea>
<wicri:noRegion>Ontario K1N 6N5</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5</wicri:regionArea>
<wicri:noRegion>Ontario K1N 6N5</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Forum Mathematicum</title>
<title level="j" type="abbrev">Forum Mathematicum</title>
<idno type="ISSN">0933-7741</idno>
<idno type="eISSN">1435-5337</idno>
<imprint>
<publisher>Walter de Gruyter GmbH & Co. KG</publisher>
<date type="published" when="2011-03">2011-03</date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="349">349</biblScope>
<biblScope unit="page" to="411">411</biblScope>
</imprint>
<idno type="ISSN">0933-7741</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0933-7741</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abelian</term>
<term>Abelian group</term>
<term>Algebra</term>
<term>Axiom</term>
<term>Bilinear</term>
<term>Bilinear form</term>
<term>Canonical</term>
<term>Canonical projection</term>
<term>Cardinality</term>
<term>Central chain</term>
<term>Classical root systems</term>
<term>Closure</term>
<term>Coxeter</term>
<term>Coxeter group</term>
<term>Datum</term>
<term>Diff</term>
<term>Exact sequence</term>
<term>Extension data</term>
<term>Extension datum</term>
<term>Height function</term>
<term>Hyperplane</term>
<term>Imaginary roots</term>
<term>Integral basis</term>
<term>Integral system</term>
<term>Invariant form</term>
<term>Invariant forms</term>
<term>Isomorphic</term>
<term>Isomorphism</term>
<term>Lemma</term>
<term>Linear form</term>
<term>Loos</term>
<term>Lucas polynomials</term>
<term>Minimal type</term>
<term>Morphism</term>
<term>Neher</term>
<term>Nite</term>
<term>Nite rank</term>
<term>Nite root system</term>
<term>Nite root systems</term>
<term>Nondegenerate</term>
<term>Normal subsets</term>
<term>Other examples</term>
<term>Other hand</term>
<term>Partial</term>
<term>Partial root system</term>
<term>Partial root systems</term>
<term>Partial section</term>
<term>Positive roots</term>
<term>Positive subset</term>
<term>Positive subsets</term>
<term>Positive system</term>
<term>Positive systems</term>
<term>Prenilpotent</term>
<term>Prenilpotent pair</term>
<term>Prenilpotent pairs</term>
<term>Prs1</term>
<term>Prs2</term>
<term>Prs3</term>
<term>Quotient</term>
<term>Quotient root system</term>
<term>Real roots</term>
<term>Reine angew</term>
<term>Representation theory</term>
<term>Res1</term>
<term>Res2</term>
<term>Res3</term>
<term>Res4</term>
<term>Root</term>
<term>Root basis</term>
<term>Root data</term>
<term>Root string</term>
<term>Root string closure</term>
<term>Root strings</term>
<term>Root system</term>
<term>Root systems</term>
<term>Scalar type</term>
<term>Subgroup</term>
<term>Subset</term>
<term>Subsystem</term>
<term>Tind</term>
<term>Tit</term>
<term>Unbroken root strings</term>
<term>Unc1</term>
<term>Vector space</term>
<term>Vector space basis</term>
<term>Vector space isomorphism</term>
<term>Weyl</term>
<term>Weyl group</term>
<term>Weyl groups</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abelian</term>
<term>Abelian group</term>
<term>Algebra</term>
<term>Axiom</term>
<term>Bilinear</term>
<term>Bilinear form</term>
<term>Canonical</term>
<term>Canonical projection</term>
<term>Cardinality</term>
<term>Central chain</term>
<term>Classical root systems</term>
<term>Closure</term>
<term>Coxeter</term>
<term>Coxeter group</term>
<term>Datum</term>
<term>Diff</term>
<term>Exact sequence</term>
<term>Extension data</term>
<term>Extension datum</term>
<term>Height function</term>
<term>Hyperplane</term>
<term>Imaginary roots</term>
<term>Integral basis</term>
<term>Integral system</term>
<term>Invariant form</term>
<term>Invariant forms</term>
<term>Isomorphic</term>
<term>Isomorphism</term>
<term>Lemma</term>
<term>Linear form</term>
<term>Loos</term>
<term>Lucas polynomials</term>
<term>Minimal type</term>
<term>Morphism</term>
<term>Neher</term>
<term>Nite</term>
<term>Nite rank</term>
<term>Nite root system</term>
<term>Nite root systems</term>
<term>Nondegenerate</term>
<term>Normal subsets</term>
<term>Other examples</term>
<term>Other hand</term>
<term>Partial</term>
<term>Partial root system</term>
<term>Partial root systems</term>
<term>Partial section</term>
<term>Positive roots</term>
<term>Positive subset</term>
<term>Positive subsets</term>
<term>Positive system</term>
<term>Positive systems</term>
<term>Prenilpotent</term>
<term>Prenilpotent pair</term>
<term>Prenilpotent pairs</term>
<term>Prs1</term>
<term>Prs2</term>
<term>Prs3</term>
<term>Quotient</term>
<term>Quotient root system</term>
<term>Real roots</term>
<term>Reine angew</term>
<term>Representation theory</term>
<term>Res1</term>
<term>Res2</term>
<term>Res3</term>
<term>Res4</term>
<term>Root</term>
<term>Root basis</term>
<term>Root data</term>
<term>Root string</term>
<term>Root string closure</term>
<term>Root strings</term>
<term>Root system</term>
<term>Root systems</term>
<term>Scalar type</term>
<term>Subgroup</term>
<term>Subset</term>
<term>Subsystem</term>
<term>Tind</term>
<term>Tit</term>
<term>Unbroken root strings</term>
<term>Unc1</term>
<term>Vector space</term>
<term>Vector space basis</term>
<term>Vector space isomorphism</term>
<term>Weyl</term>
<term>Weyl group</term>
<term>Weyl groups</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We develop a general theory of reflection systems and, more specifically, partial root systems which provide a unifying framework for finite root systems, Kac–Moody root systems, extended affine root systems and various generalizations thereof. Nilpotent and prenilpotent subsets are studied in this setting, based on commutator sets and the descending central series. We show that our notion of a prenilpotent pair coincides, for Kac–Moody root systems, with the one defined by Tits in terms of positive systems and the Weyl group.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Loos, Ottmar" sort="Loos, Ottmar" uniqKey="Loos O" first="Ottmar" last="Loos">Ottmar Loos</name>
</noRegion>
<name sortKey="Loos, Ottmar" sort="Loos, Ottmar" uniqKey="Loos O" first="Ottmar" last="Loos">Ottmar Loos</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Neher, Erhard" sort="Neher, Erhard" uniqKey="Neher E" first="Erhard" last="Neher">Erhard Neher</name>
</noRegion>
<name sortKey="Neher, Erhard" sort="Neher, Erhard" uniqKey="Neher E" first="Erhard" last="Neher">Erhard Neher</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:89311032CD672C22C824E50DA7AC6E16E169F1A8
   |texte=   Reflection systems and partial root systems
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022